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Abstract 

Background Recent technological advances have led to a surge in the use of wearable devices for personal health 
and fitness monitoring; however, clinical uptake of wearable devices for remote or ‘free-living’ measurement of daily 
health-related behavior has lagged. To advance the field, there is need for valid and reliable outcomes across multiple 
health domains specific to the cohorts or patients of interest and centralized tools to build capacity for use of these 
data. The NiMBaLWear pipeline provides a flexible and integrated approach to wearables analytics applied to raw sen-
sor data that considers multiple, inter-related physiological and behavioral signals to provide a holistic view of health 
status.

Results & discussion NiMBaLWear is a modular, open-source, wearable sensor analytic pipeline that quantifies 
physical activity, mobility, and sleep from raw single- or multi-sensor free-living data collected over multiple days. 
Data captured from any device, in different possible formats, are standardized prior to processing. Data preparation 
includes accelerometer autocalibration, cross-device synchronization, and non-wear detection. Validated, domain-
specific algorithms detect events, generate outcome measures, and output standardized tabular data and user-
friendly summary collection reports. NiMBaLWear was developed in Python using an iterative and incremental 
software development process, which included a combination of semi-automated inspection and expert review 
of data collected from 286 participants across two remote-measurement studies. A comparative analysis revealed 
a paucity of open-source packages capable of deriving and sharing health-related behavioral outcomes across multi-
ple domains from multi-sensor wearables data. Forthcoming improvements to the pipeline will leverage sensor fusion 
techniques to add new, and refine existing, domain- and disease-specific analytics, and optimize pipeline accessibility 
and reporting.

Conclusion The NiMBaLWear pipeline transforms raw multi-sensor wearables data into accurate and relevant out-
comes across multiple health domains to objectively characterize and measure an individual’s daily health-related 
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Background
Advances in non-invasive wearable and ambient sen-
sor technologies, including developments in sensor 
networks, communication protocols, and feature clas-
sification, have created a landscape of opportunity for 
the clinical use of health-related information captured 
in daily life [1–3]. A shift toward remote or ‘free-living’ 
measurement outside of a clinic or laboratory with digi-
tal health technologies, enables monitoring of behaviors 
and symptoms as they occur throughout the day, reduc-
ing reliance on patient self-report [3–5] and minimizing 
the opportunity for observer effects [6, 7]. Continuous 
remote measurement can also capture infrequent events 
that are unlikely to occur under the observation of a 
healthcare provider [4, 8–10]. With continued advances, 
clinically relevant information derived from remotely 
acquired data could positively impact health outcomes 
and decrease healthcare costs by identifying declines in 
health that can inform early diagnosis and timeliness of 
care [11–13]. Unfortunately, while consumer use of wear-
able technologies (‘wearables’) for health monitoring has 
grown tremendously – largely driven by the adoption of 
smartwatches for general health and fitness tracking – 
clinical uptake has lagged. Integration of wearables into 
the healthcare system has been limited, in part, by the 
need for analytical and clinical validation of digital end-
points [14, 15] as well as the relative absence of technical, 
training, and change management processes to support 
this transition [16, 17]. The current work describes an 
open-access, easy-to-use analytics pipeline (NiMBaL-
Wear) designed to minimize these barriers and maximize 
the utility of wearables for clinical application.

NiMBaLWear was designed and developed according 
to four criteria deemed essential for clinically meaning-
ful remote data capture and analysis within our popula-
tions of interest, which primarily include older adults and 
persons living with complex health conditions: 1) multi-
domain measurement, 2) device independence, 3) pipe-
line modularity and extensibility, and 4) pipeline and data 
usability. NiMBaLWear adopts a flexible and integrated 
approach to health monitoring that considers multiple, 
inter-related physiological and behavioral domains (e.g., 
mobility, sleep, activity, cardiovascular function) to pro-
vide a more holistic view of health status.

This multi-domain approach necessitates a multi-sen-
sor model that accommodates a variety of sensor types 

(‘modes’) worn at appropriate body locations (‘nodes’) to 
optimize the type and quality of raw data that is used to 
construct the valid metrics of health required for clinical 
purposes [4, 10, 18–21]. NiMBaLWear development has 
prioritized a ‘low-burden’ multi-modal and multi-nodal 
model not afforded by currently available software that is 
either limited to processing data from a particular device 
manufacturer or uses a single-sensor approach. Cur-
rently, NiMBaLWear utilizes accelerometer, gyroscope, 
and temperature sensor data from wrist- and ankle-worn 
devices across its data preparation and analytics algo-
rithms. However, to accommodate the future integration 
of additional sensor modes (e.g., electrocardiography 
(ECG), Global Positioning System (GPS)) and nodes (e.g., 
thigh, chest), the NiMBaLWear pipeline maintains device 
independence by supporting data ingestion from various 
devices and including pre-processing modules to tem-
porally synchronize incoming data. This model makes it 
possible to unify the measurement and analysis of mul-
tiple health domains by optimizing the information cap-
tured from individual devices and, when appropriate, 
fusing data from multiple inputs.

To support a wide range of current and future clini-
cal applications, NiMBaLWear’s modular design allows 
users to select domains and outcomes based on clinical 
need and sensor availability. This modularity begets an 
extensibility that also allows refinement of outcomes in 
existing domains or the addition of new health domains. 
Current NiMBaLWear outcomes focus on mobility (e.g., 
gait), sleep, and activity/sedentary behaviour, which were 
identified as priorities given their relationship to chronic 
disease [22–25], their importance for self-management of 
health [26, 27], and their potential to support early detec-
tion of disease [22, 26, 28–31]. Imminent expansions 
include the addition of full-body posture and cardiac 
outcomes, disease-specific outcomes, and refinement of 
existing sleep, mobility, and activity outcomes based on 
additional sensor inputs.

Importantly, consumer technology typically includes 
proprietary software, which outputs highly processed 
data and creates barriers for clinical application due 
to challenges in understanding, reconstructing, and 
evaluating the analytics, as needed, for clinical valida-
tion [14, 32]. Therefore, NiMBaLWear was designed 
with a focus on transparency and accessibility, allowing 
researchers and clinicians with limited programming 

behavior. NiMBaLWear’s focus on high-quality, clinically relevant outcomes, as well as end-user optimization, provides 
a foundation for innovation to improve the utility of wearables for clinical care and self-management of health.
Keywords Wearable technology, Remote monitoring, Analytics, Multi-sensor, Open-source, Older adults, 
Neurodegenerative disease, Clinical application, Health-related behaviors, Digital health
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expertise to process and access data. Pipeline-gener-
ated outputs ensure data has utility for foundational 
work in research and for patient and clinician report-
ing. The current version of NiMBaLWear is being used 
in several data collection initiatives acquiring continu-
ous wearable sensor data from over 400 participants to 
date, most of whom are older adults and/or persons liv-
ing with neurodegenerative disease.

An essential motivation for the development of the 
pipeline was to create a platform on which to consoli-
date best practices and innovation in data analytics 
for wearable sensors across a range of health domains. 
This serves, in our view, as a critical phase of develop-
ment to enable clinical research and inform/evaluate 
commercial applications that are intended for clinical 
applications. This paper provides an overview of NiM-
BaLWear, with an eye toward continued advancement 
through the collective effort of a community of experts 
with a shared vision.

Implementation
NiMBaLWear overview
NiMBaLWear is an open-source, Python-based [33] data 
processing pipeline that currently detects and quanti-
fies gait, sleep, and activity from multi-day, multi-device, 
free-living wearable device data. To accommodate multi-
device collection and analysis, NiMBaLWear organizes 
incoming wearable data collections, devices, and sen-
sors. A data collection is a group of related devices col-
lected simultaneously and attached to the same person. 
A device is a single physical device that may contain 
multiple sensors (e.g., accelerometers, gyroscopes, ECG, 
temperature) but usually outputs data to a single file. The 
Collection and Device objects are used to store data in 
memory during processing. For longer term storage, all 
data, including raw wearable device data, metadata, and 
output data, are organized within a single study folder in 
a defined structure.

Pipeline features
NiMBaLWear data processing occurs in three separate 
stages: 1) conversion, 2) data preparation, and 3) analy-
sis. When run independently, the outputs of each stage 
are saved to file and can be used in subsequent pro-
cesses. When run sequentially, the outputs of each stage 
are saved to file but also held in memory to be used in 
the subsequent process, so that they do not need to be 
re-read. For each stage, some default parameters are 
described below, but most pipeline parameters may be 
customized via a settings.toml file. An overview of the 
logic model is presented in Fig. 1.

Conversion
The conversion stage imports raw wearable device data 
and exports to standard European Data Format (EDF) 
files [34, 35]. NiMBaLWear can convert data from sev-
eral devices including Axivity (Axivity Ltd., Newcas-
tle Upon Tyne, UK), GENEActiv (Activinsights Ltd., 
Kimbolton, UK), Bittium (Bittium USA, Bothell, WA), 
and ActiGraph (ActiGraph, Pensacola, FL). Inclusion 
of any other device is possible with access to the raw 
data (e.g., conversion from any proprietary data format 
structures) and will either require external conversion 
to an appropriately formatted EDF file or the addition 
of a module for device-specific conversion. Within 
NiMBaLWear, EDF file operations are supported by the 
pyEDFlib package [36].

Fig. 1 Simplified flow of data through the NiMBaLWear pipeline
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Data preparation
The data preparation stage, including accelerometer 
autocalibration, device synchronization, and non-wear 
detection as described below, ensures consistent, high-
quality data are prepared for further analysis regardless 
of the device from which they are collected.

Accelerometer autocalibration The relationship 
between voltage and acceleration is calibrated using an 
iterative closest-point fitting process during periods 
when the accelerometer is not moving so that gravity, a 
known constant, is the only acceleration being detected 
[37]. Calibration outputs, such as the amount of calibra-
tion error in each axis before and after calibration and 
the number of iterations performed, are stored to file.

Synchronization Every wearable device experiences 
unique internal clock drift causing slightly different sam-
pling rates across devices. For multi-day collections, 
this drift can cause significant temporal misalignment 
of data from different devices. A paucity of hardware-
synchronized devices that permit collection from multi-
ple body segments with access to raw data necessitated 
an approach to synchronize different devices that takes 
advantage of the accelerometer sensor included in most 
products. The current method requires a series of manual 
synchronization events to be performed with all devices 
in unison at various timepoints throughout the col-
lection. Each synchronization event consists of 5 to 10 
device rotations with 5 to 10 seconds of rest between cre-
ating an easily detectable repeating square waveform in 
the accelerometer. The detected synchronization events 
are used to resample the data into alignment. Synchro-
nization outputs, including the timing of each sync event 
in all devices, the calculated clock drift, and subsequent 
correction, are stored to file.

Non‑wear detection Periods of device non-wear are 
detected using our DETACH algorithm that combines 
characteristic changes in acceleration and near-body 
temperature (when available) to detect when a device 
has been removed or reattached [38]. Specifically, stand-
ard deviation of acceleration, rate of temperature change, 
and absolute temperature are considered over 5-minute 
rolling windows to determine the start and end of non-
wear periods. A classification and regression tree was 
used to determine the optimal values for these param-
eters depending on the wear location of the device (e.g., 
chest, wrist, ankle). Optionally, long periods of non-wear 
at the beginning and end of collection can be cropped 
from the device data to remove data collected outside of 
the intended period, such as during shipment of devices 
to and from participants. A cropped version of the 

standardized EDF file is stored if this option is selected. 
Non-wear outputs, including the timing of each period of 
wear and non-wear, are stored to file.

Domain‑specific analytics
The current pipeline modules, described below, focus on 
inertial measurement unit (IMU) data from wrist- and 
ankle-worn devices. Currently, in each domain, raw data 
from a single, most appropriate node is used to detect 
events and generate outcomes. Importantly, our multi-
modal, multi-nodal approach, including cross-device 
temporal synchronization of raw data, allows cross-
domain comparison of events and outcomes derived 
from different underlying nodes. Continued analytics 
development (see Planned Future Developments and 
Intended Use) is further supported by this model by per-
mitting the flexibility to calculate outputs for a specific 
domain from different sources, depending on the avail-
ability of devices and sensors, and allowing fusion of data 
from multiple sensors. NiMBaLWear’s modular design 
also supports these analytic advances by permitting sim-
ple integration of additional modules.

Gait Gait – including walking, jogging, and running – 
is detected using gyroscope or accelerometer data from 
an ankle-worn device. Candidate steps can be identified 
using either a gyroscope- or accelerometer-based algo-
rithm before combining temporally proximal steps into 
gait bouts. The gyroscope-based step detection algorithm 
detects positive angular velocity peaks that occur above 
an adaptive threshold – these peaks correspond with 
the mid-swing point of each candidate step [39]. This 
algorithm also detects other rhythmic lower limb move-
ments, such as cycling, that can be manually removed 
to improve step identification [40]. However, by default, 
these movements are retained so that broad measures of 
activity (step count and intensity minutes) remain closely 
aligned. The accelerometer-based step detection algo-
rithm employs a finite state machine algorithm to iden-
tify gait phases using the vertical axis acceleration – the 
local negative peak of each swing phase corresponds 
with the mid-swing point of each candidate step [41]. 
Groups of at least two candidate steps occurring within 
two seconds of the previous step are combined into gait 
bouts [42–44]. Candidate steps that do not occur within 
a defined gait bout are not included for further analysis. 
Gait outputs, including the timing of detected steps and 
gait bouts, as well as the number of steps within each gait 
bout, are saved to file.

Sleep Sleep is detected using wrist accelerometer data 
by first identifying sleep period time windows (SPTWs) 
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during which sleep is likely to occur and then search-
ing within these windows for sleep bouts. SPTWs are 
detected by assessing z-axis angle variance, where the 
z-axis is positioned perpendicular to the skin surface, 
as previously described [45]. All SPTWs greater than 30 
minutes are retained and those occurring within 60 min-
utes of each other are combined. Within each SPTW, 
sleep is detected when there is no change in z-axis angle 
greater than 5 degrees for at least 5 minutes [46]. SPTWs 
that do not contain sleep bouts are removed from fur-
ther analysis. Each SPTW and sleep bout is defined as 
overnight sleep if it overlaps the customizable overnight 
period (10 pm to 8 am, by default). All other SPTWs and 
sleep bouts are defined as daytime sleep. Sleep outputs, 
including the timing of each SPTW and sleep bout, and 
measures of sleep duration, sleep-to-wake duration, sleep 
efficiency, and wake after sleep onset, are saved to file.

Activity and sedentary behaviour Activity intensity 
classification is performed using wrist accelerometer 
data. Accelerometer data is filtered using a 20 Hz low-
pass filter [47] and the average vector magnitude (AVM) 
of acceleration is then calculated in 15-second epochs. 
Epochs that do not overlap with detected non-wear or 
sleep are classified as sedentary, light, moderate, or vig-
orous intensity by comparing the AVM to epoch length-
independent activity intensity cut-points, which may 
be derived from epoch length-dependent cut-points, 
if necessary [47]. NiMBaLWear allows cut-points to be 

customized based on participant age and, by default, 
uses separate published cut-points for participants under 
60 years old [48] and for those 60 years and older [47]. 
Activity bouts are then constructed by combining con-
secutive epochs of the same intensity. Activity outputs, 
including timing and AVM of each epoch, and timing and 
intensity of activity bouts, are saved to file.

Pipeline outputs
The pipeline automatically generates several catego-
ries of outputs including: 1) standardized raw data that 
is synchronized in time against all other devices in the 
data collection, 2) tabular data for outcome measures 
from the respective domain-specific analytics, and 3) the 
summary collection report for visualizing core analytic 
outputs presented in time across all days (Fig. 2). These 
standardized outputs facilitate the development of sup-
plemental, user-generated reports that can serve a variety 
of purposes. For example, recent work by our group uti-
lized NiMBaLWear outputs to generate a feedback report 
designed to provide study participants with information 
to guide self-management of daily health-related behav-
iors [49].

Standardized device data
For each device that is processed using the pipeline, 
a raw device EDF is output after the conversion stage 
and a standardized device EDF is output after the 

Fig. 2 Sample collection report. Data is included from multiple sensors to integrate information about sleep (light purple = SPTW; deep 
purple = sleep bouts), gait (green), activity intensity (yellow = light; orange = moderate-to-vigorous), and non-wear (grey, with hatching indicating 
specific device), within and across days, for each participant. Each row represents a 24-h period (days 1–7 stacked), from midnight to midnight. 
Duration of the specific behavior is represented by the width of the block. For each day, participant self-reported sleep and activity are displayed 
as thin bars below the sensor-derived, pipeline-generated data
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auto-calibration and synchronization processes are 
complete. If cropping is selected, a cropped device EDF 
is output following non-wear detection. By default, the 
pipeline saves and uses a single EDF for each device, but 
there is an option to create a separate EDF file for each 
sensor type within a device (e.g., accelerometer, gyro-
scope, temperature).

Tabular data
Tabular data, including the timing of detected events, 
device- and event-specific analytics, and summary out-
comes, are output in standard format, comma-separated 
values (CSV) files. All outputs contain common fields 
identifying the study, participant, and collection to allow 
outputs from multiple collections, participants, and stud-
ies to be combined for further analysis. Device-specific 
outputs (e.g., non-wear, calibration, synchronization) 
contain fields identifying the device type and location of 
wear. Event-specific outputs contain an event label and 
identification number as well as start and end times-
tamps, if applicable. Event timestamps directly corre-
spond with timestamps of the synchronized device data. 
Specific outputs of each pipeline stage have been noted 
above (see Domain-specific analytics) and are summa-
rized in Table 1.

Summary collection report
The collection report is an automatic output from 
the pipeline used to visually inspect synchroniza-
tion, domain-specific analytics, and detected non-wear 

periods for all devices (Fig.  2). The integrated presenta-
tion of data within the collection report is particularly 
useful for identifying potential data irregularities. It is 
used to visualize the data immediately after processing, 
providing an overview of the various outcome measures 
in time across days. The collection report also includes 
a summary of digitally stored, participant-reported 
information generated in an annotated text file which, 
depending on the study, can also include timestamps of 
logged activities or events (e.g., sleep, activity, medication 
timing).

Pipeline logs
Every time the pipeline is used to process a data collec-
tion, a log file is generated. The log contains a header 
that includes the study, participant, and collection iden-
tifiers, the pipeline stages included, the version of NiM-
BaLWear used, and all customizable parameters used 
for each stage. This information is followed by a series of 
messages generated as the data moves through the pipe-
line. Each message is labelled with the date and time, and 
its level of importance: INFO, WARNING, or ERROR. 
INFO messages relay information about the processes 
performed during each stage and substage of the pipe-
line. WARNING messages indicate that something unex-
pected occurred, but the pipeline was able to complete its 
operation. WARNING messages may indicate issues with 
the data inputs or outputs and should be investigated 
further. ERROR messages indicate that an exception 
occurred that prevented the pipeline from completing 

Table 1 Domain-specific daily summary outcome measures

a All sleep outcome measures are calculated and reported separately for the whole day (noon to noon) and overnight (10 pm to 8 am, by default)

Domain Outcome measure Description

Device wear Wear duration Total duration device was worn while collecting data

Non-wear duration Total duration device was non worn while collecting data

Gait Longest bout duration Duration of the longest walking bout

Longest bout steps Number of steps in the longest walking bout

Three-minute bouts Number of walking bouts of three minutes or longer duration

Total steps Total number of steps

Activity Sedentary duration Total duration of sedentary (does not include sleep)

Light activity duration Total duration of light activity

Moderate activity duration Total duration of moderate activity

Vigorous activity duration Total duration of vigorous activity

Sleepa Sleep window duration Total duration of all SPTWs that contain detected sleep

Sleep duration Total duration of sleep detected

Sleep-to-wake duration Total duration from first sleep onset to last wake onset in all SPTWs that contain sleep

Sleep efficiency Decimal fraction of sleep duration relative to sleep window duration (Sleep duration 
/ Sleep-to-wake duration)

Wake duration after sleep onset Duration of time spent awake between first sleep onset and last wake onset (Sleep-
to-wake duration – Sleep duration)
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the operation. When an ERROR occurs, the exception 
traceback information is exported to the log and process-
ing of that data collection is aborted.

Pipeline usage
Figure  3 demonstrates a simple usage example for pro-
cessing data with NiMBaLWear. Prior to executing the 
pipeline, required study data needs to be organized in a 
study directory. The required data include all raw device 
data files and two CSV files containing information about 
the data collections and devices included in the study. 
Detailed instructions describing how to organize data 
and specify custom parameters before executing the 
pipeline can be found in the documentation included 
with the software. Following data preparation, process-
ing can proceed by initializing a nimbalwear.Study object 
with the path to the study folder and executing the Study.
run_pipeline method with the option to specify which 
collections to include, which stages and to perform, and 
any custom settings that should be used.

Development and evaluation
NiMBaLWear was developed in Python using an itera-
tive and incremental software development process and 
data from two remote measurement studies (Remote 
Monitoring in Neurodegenerative Disease (ReMiNDD) 
and Health in Aging, Neurodegenerative Diseases and 
Dementias in Ontario (HANDDS-ONT)) deployed 
within the Ontario Brain Institute (OBI) Ontario Neu-
rodegenerative Disease Research Initiative (ONDRI) 
Integrated Discovery Program (IDP). In ReMiNDD, 39 

community-dwelling adults living with cerebrovascu-
lar or neurodegenerative disease wore devices on both 
ankles, both wrists, and the chest for one week [50]. Each 
wrist and ankle device (GENEActiv Original) collected 
accelerometer and temperature sensor data. The chest 
device (Bittium Faros 180) collected ECG and acceler-
ometer sensor data. In HANDDS-ONT, 247 commu-
nity-dwelling adults, with or without neurodegenerative 
disease (approximately 50% per cohort), wore devices on 
one wrist, one ankle, and the chest for 10 days. Each wrist 
and ankle device (Axivity AX6) collected accelerom-
eter, gyroscope, and temperature sensor data. The chest 
device (Bittium Faros 360) collected ECG, accelerometer, 
and temperature sensor data. The human research ethics 
committee of Sunnybrook Research Institute, Toronto, 
ON, Canada, approved both the ReMiNDD (REB 
approval: 007–2019) and HANDDS-ONT (REB approval: 
2021–1517) studies, and all participants provided written 
informed consent before participating.

A minimum viable product (MVP) was developed 
using data from the ReMiNDD study. The MVP included 
data conversion to standardized EDF for GENEActiv 
and Bittium files and detected non-wear from acceler-
ometer data only. Domain-specific analytics (gait, sleep, 
and activity) were performed using a single device for 
each. The pipeline was then evaluated and improved 
over a two-year period coinciding with the HANDDS-
ONT data collection. This included iterative quality con-
trol processes to evaluate data integrity, as well as expert 
data review of the raw data, tabular data, and collection 
reports for all study participants. Errors and inefficiencies 

Fig. 3 Sample usage script. In this script, (1) initializes a Study object, (2) runs all available data collections through all stages of the pipeline using 
the default parameters, and (3) runs two specific data collections through only the data preparation stage of the pipeline using custom parameters
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identified through this process led to several revisions 
and adaptations as described below. The process of evalu-
ation, improvement, and continued development is ongo-
ing Priority targets for future work are detailed below.

Results and Discussion
NiMBaLWear pipeline performance evaluation
Key evaluation outcomes established using data from 
the HANDDS-ONT study are presented below along-
side illustrative data, where appropriate, to demonstrate 
the effect of algorithm modifications on underlying data 
quality.

Gyroscope‑based gait algorithm
The MVP was developed using an accelerometer-based 
gait algorithm, but inclusion of a gyroscope in HANDDS-
ONT permitted evaluation of a gyroscope-based gait 
detection algorithm. Visual inspection of accelerometer 
data alongside detected gait bouts and identified step 
locations during data review of the first 20 participants 
revealed fewer errors in gait detection for the gyroscope- 
versus accelerometer-based algorithm, particularly in 
individuals with slower gait (i.e., lower acceleration and 
angular velocity magnitudes during stepping). Both 
algorithms are included as options to account for equip-
ment/sensor availability and different gait features across 
cohorts.

Activity classification improvements
Several improvements to activity classification were 
implemented after expert data review. Visual inspection 
of wrist-derived activity classification alongside ankle-
derived gait bout data revealed the occurrence of gait 
bouts that were being classified as sedentary, which we 
have reported in detail elsewhere [51]. Further inspec-
tion of raw wrist accelerometer and ankle gyroscope data 
revealed two separate causes for this discrepancy. First, 
in many older adults, the wrist movement associated 
with arm swing did not reach commonly used cut-points 
for light intensity activity [48]. Upon further review, 
it became clear that the single set of cut-points used to 
classify activity intensity was not appropriate for the 
wide age range of HANDDS-ONT participants (mean: 
65.6 ± 12.3  years, range: 20–92  years). To address this 
discrepancy, we added the option to define customizable 
age-based activity intensity cut-points and, by default, 
included separate cut-points for adults under 60  years 
old [48] and those 60 years and older [47]. Second, dur-
ing some gait bouts, no arm swing was detectable from 
the wrist accelerometer. Participant activity logs revealed 
instances of daily life activity (e.g., walking a dog, sta-
tionary cycling) that could be characterized by identi-
fiable stepping (or cycling) activity without significant 

arm movement. To mitigate such classification errors, a 
separate activity classification was created using gait data 
from the ankle sensor to distinguish epochs classified as 
sedentary that coincided with gait from those that did 
not. Across 122 participants for which this distinction 
was made, 9.6% of total sedentary time occurred during 
gait. Currently, we manage these instances by exclud-
ing them from activity classification. Ongoing work will 
provide the option to further refine activity classifica-
tion based on gait status, full-body posture (i.e., lying 
vs. sitting vs. standing), and heart rate when appropriate 
devices are available.

Cross‑device synchronization
While activity and gait outcomes are separately derived 
from a single device (wrist and ankle, respectively), the 
cross-domain comparison required to identify peri-
ods of sedentary classification that overlapped with gait 
bouts required close temporal synchronization between 
devices. In anticipation of the need for cross-device 
synchronization, HANDDS-ONT included a series of 
synchronization events performed throughout the data 
collection, as described above. We first developed an 
algorithm to detect these events in each device sepa-
rately. Comparison of the timing of 638 synchroniza-
tion events across 126 participants revealed a mean (SD) 
absolute clock drift rate of 2.51 (3.81) seconds per day. To 
correct for this drift, the algorithm was modified to resa-
mple data between detected synchronization events to 
bring them into alignment.

Accelerometer autocalibration
Review of activity classification data for early participants 
suggested total activity was overestimated in some cases. 
Specifically, six of the first 55 participants averaged more 
than 400 min of total activity per day. Visual inspection of 
wrist accelerometer vector magnitude data revealed that 
some periods of non-movement were being classified as 
light intensity activity due to baseline error greater than 
the light activity cut-point. This influence of accelerom-
eter error on activity classification led us to implement 
the accelerometer autocalibration procedure (see Imple-
mentation). In a subset of 479 device collections across 
157 HANDDS-ONT participants (3–5 device collections 
per participant) on which autocalibration was performed, 
we found a mean (SD) accelerometer error of 29.0 (13.5) 
mg before calibration. For context, the light activity cut-
points used for adults 60 years or older are 42.5 mg for 
the non-dominant arm and 62.5  mg for the dominant 
arm [47]. In this subset, 15.7% of device collections had 
error of at least 42.5  mg and 2.3% had error of at least 
62.5 mg. Autocalibration reduced the mean (SD) error to 
3.8 (1.3) mg.
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Non‑wear detection improvements
Early data review of potential non-wear periods revealed 
a characteristic change in near-body temperature when 
a device was removed and reattached, leading to devel-
opment of our DETACH non-wear detection algorithm 
[38]. This novel algorithm considers standard deviation 
of acceleration, rate of temperature change, and absolute 
temperature over 5-min rolling windows to determine 
the start and end of non-wear periods. The values of these 
parameters were originally optimized for devices worn 
only at the wrist and further non-wear review revealed 
a disproportionate amount of non-wear misclassifica-
tion for ankle- and chest-worn devices. As such, the same 
optimization procedure was performed to derive body 
location-specific parameters for devices worn at the chest 
and ankle and the option was added to specify custom 
parameters. Although our current non-wear methods are 
performing at, or better than, other published algorithms 
[38], differentiating non-wear from sleep or sedentary 
behaviour continues to pose challenges. For example, of 
the 81 HANDDS-ONT participants in whom non-wear 
was detected with body-location specific parameters, 34 
(42%) required custom parameters to resolve instances 
of non-wear misclassification, usually overnight. Cur-
rent development focuses on automatically generating 
personalized non-wear detection parameters based on 
the unique temperature and accelerometer data profile 
of each device worn by each participant. Meanwhile, 
ongoing expert data review remains focused on inspect-
ing detected non-wear, sleep, and sedentary behaviour to 
ensure proper classification.

Comparative analysis
It remains critically important to continue developing 
tools for wearables data analyses in health applications 
that output high-quality, fit-for-purpose data. Commer-
cial and proprietary products are limited in their oppor-
tunity to support continued development and extended 
use for clinical purposes. To address this gap, a grow-
ing number of open-source analytics packages designed 
for use with a variety of wearable devices have emerged. 
Table 2 details open-source toolkits available to support 
analysis of wearables data. This list was compiled by con-
ducting a scan of the literature as well as common data 
analytics repositories such as GitHub [52] and OWear 
[53]. Algorithms and toolkits were included if they met 
the following criteria: 1) they rely on access to raw sensor 
data, 2) they accommodate data collected for extended 
periods in daily life, outside of a lab or clinic, and 3) they 
generate outcomes that characterize daily health-related 
behaviors. Several open-source packages that provide 
support for signal processing of body worn sensors 
data were not included because they do not specifically 

characterize health-related behaviours during continuous 
wear. For example, BioPatRec [54] uses EMG for pros-
thetics control, Gait-tech [55] performs gait/motion anal-
ysis, OpenSignals [56] and Neurokit [57] provide both 
biosignal processing and visualization tools.

Most included packages focus on one specific domain 
(e.g., sleep or gait) or use data from a single node, most 
commonly the wrist, even when providing multi-domain 
outcomes (e.g., sleep, activity, mobility). This reliance 
on a single wrist node persists despite limitations of this 
location to assess whole body behaviours such as walk-
ing [51]. There is growing interest in and evidence sup-
porting the feasibility and importance of multiple node 
locations [18, 21, 51], as used in Scikit Digital Health 
[70] and NiMBaLWear. An important additional advan-
tage of NiMBaLWear is the embedded cross-device 
temporal synchronization, which provides the opportu-
nity for comparing and fusing data from different nodes 
and modes. This capability enables upcoming releases 
of NiMBaLWear to include the option to fuse data from 
multiple modes (i.e., IMU and ECG). The benefit of an 
integrated, multi-domain platform is linked to the value 
of understanding the interplay between health-related 
behaviors such as the important relationships between 
sleep, physical activity, sedentary behavior, mood, social 
engagement, and symptoms of disease [24, 27, 71–75].

As highlighted in Table  2, most packages provide 
the option to import raw data from different devices 
or standard format data files (e.g., CSV or EDF), which 
affords access to common analytics regardless of which 
device(s) collected the data. This device independence 
facilitates access to raw sensor data that can be transpar-
ently transformed into measured outcomes of interest 
using open-source processing algorithms and pipelines. 
Further, a device-independent pipeline facilitates the 
multi-nodal, multi-modal approach required to derive 
multi-dimensional outcomes of interest, readily allows 
the inclusion of new and evolving hardware, and meets 
the imminent demand for increased scope and scale of 
wearables data analyses. Finally, in our experience, the 
flexibility of a device-independent pipeline has been 
paramount to meeting the challenges of developing and 
implementing remote clinical trials that must consider 
factors such as familiarity with a particular device, cost, 
concerns regarding validity of hardware and proprietary 
analytics [14], access to raw data, and device usability.

For the field of wearable technology to make strides in 
its application to healthcare, both transparency and vali-
dation of outcomes are vital. This includes the growing 
number of machine learning approaches that consolidate 
data from wearable devices to develop predictive mod-
els for healthcare decision-making. To this end, we rec-
ognize the importance of accessibility to both raw and 
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Table 2 Comparison of open-source wearables analytics packages

Package Name (Code) Domain(s) Modes 
(Sensor 
Types)

Inputs (Specific Device/
Data)

Nodes(Body Site) Additional Notes

Single domain – single device
 SleepPy(Python) [58] • Sleep • Accel

• Temp
• Light

• GENEActiv • Wrist • While the primary focus 
is sleep, does provide activity 
index
• Tables and charts for analysis 
and presentation of outputs 
and sleep measures for each 
day separately

 GaitPy
(Python) [59]

• Gait • Accel • Formatted CSV • Lumbar • Uses single axis (vertical) 
from low back site and requires 
subject height
• Not currently maintained 
– Scikit Digital Health (listed 
below) includes a newer ver-
sion of GaitPy

 Verisense Toolbox Step 
Detection Algorithm
(GGIR2.0) [60]

• Gait • Accel • Same criteria as GGIR • Wrist • Add-on to GGIR for step 
detection
• Visualization of raw data
• Summary of step count data

 GENEAclassify
(R) [61]

• Gait • Accel • GENEActiv • Wrist • Provides activity classification 
and intensity outcomes

 Pampro
(Python) [62]

• Activity • Accel • Axivity
• GeneActiv
• Actigraph
• activPAL
• Formatted CSV

• Wrist • Visualization of raw data
• Physical activity summary 
statistics
• Extract bouts for specific cut 
points

Single domain – multiple devices
 OpenSenseRT
(Python and OpenSim) [63]

• Limb motion Gyro
Accel

• Raspberry Pi microcon-
troller
• Adafruit IMU

• Many
(up to 14)

• Limb kinematics (flexion, 
extension, rotation, adduction)
• Visualizations and summary 
joint angles
• Requires hardware/compo-
nent assembly

 BDlab-OR: FoGdetection 
(Matlab) [10]

• Gait • Gyro
• Accel

• Formatted CSV • Lumbar
• Bilateral feet or shanks

• Specific to detection of freez-
ing of gait
• Import bouts of data contain-
ing gait activity
• Outputs number of freezing 
events

 OpenIMU
(Python) [64]

• Activity • Accel
• GPS

• Actigraph
• OpenIMU logger
• AppleWatch SensorLogger

• Wrist • Visualization of time-series 
and summary activity metrics
• Export data as CSV or Matlab 
format

Multiple domains – single device
 GGIR
(R) [65]

• Sleep
• Activity
• Sedentary

• Accel • GENEActiv
• Actigraph
• Axivity
• Movisens

• Wrist • Visualization of data and tabu-
lar data across and within days
• Verisense (noted earlier) 
is a GGIR add-on for step 
detection

 Biobank Accelerometer 
Analysis
(Python) [66–69]

• Sleep
• Activity
• Sedentary

• Accel • GENEActiv
• Actigraph
• Formatted CSV

• Wrist • Visualizations and data out-
puts within and across days
• Outputs time series 
of epoched data and bouts 
(CSV)
• Originally designed to use 
with UK Biobank data
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tabular data for continued development of analytics, as 
well as full documentation for embedded analytics (e.g., 
error, run-time reporting). As noted in Table  2, most 
packages do provide the ability to visualize time series 
data and provide exported tabular data but the extent to 
which process outputs are documented varies. Further, 
NiMBaLWear is currently the only toolkit to produce 
outputs including standardized, accessible, and tempo-
rally synchronized raw data alongside data visualizations 
and a range of tabular data.

Planned future developments and intended use
We have prioritized three areas for NiMBaLWear devel-
opment to optimize uptake and utility. These priorities 
include: 1) improving wearable data quality before it is 
ingested into the pipeline, 2) leveraging sensor fusion 
techniques to add or improve domain- and disease-spe-
cific analytics, and 3) improving pipeline accessibility for 
those with limited programming expertise.

Data quality
Ongoing work aims to automatically set personalized 
non-wear detection parameters based on the unique tem-
perature and accelerometer data profile of each device 
worn by each participant. The goal is to further reduce 

the frequency of misclassification of non-wear, seden-
tary, and sleep periods. We are also currently exploring 
the feasibility of synchronizing devices around naturally 
occurring behavior (e.g., walking) rather than relying on 
manual synchronization events during the collection 
period. While the current method is simple and robust, 
the proposed method will provide more frequent syn-
chronization points while reducing participant burden.

Domain‑Specific analytics
The addition of posture and ECG modules, as well as 
other expanded, sensor fusion-based analytics, are criti-
cal to maximizing the utility of wearables data for clinical 
application. Such advances will aid in resolving uncer-
tainties in the data (e.g., sedentary activity classification 
from a wrist-worn IMU during walking) and improve 
evaluation of health-related behaviors. A beta version of 
the posture module, capable of classifying body segment 
orientation and full body posture, has been developed 
and is undergoing final stages of testing. While body seg-
ment orientation is derived from a single device, accurate 
full body posture classification requires fusion of accel-
erometer data from multiple synchronized devices worn 
on different nodes (e.g., chest and thigh). In addition to 
a posture module, future versions of NiMBaLWear will 

Packages are categorized by number of health domain(s) addressed (one or multiple) and capacity for toolkit to process data from one (single node/mode) or 
more devices (multiple nodes/modes). (Accel accelerometer, Gyro gyroscope, Temp temperature, GPS global positioning system, CSV comma-separated values, EDF 
European data format)

Table 2 (continued)

Package Name (Code) Domain(s) Modes 
(Sensor 
Types)

Inputs (Specific Device/
Data)

Nodes(Body Site) Additional Notes

Multiple domains – multiple devices
 Pfizer/Scikit-digital-health 
(Python) [70]

Sleep
Gait
Transition

• Accel • GENEActiv
• Axivity
• APDM (Opal)

• Lumbar
• Wrist

• Specific wear locations 
(nodes) used for specific 
domains run separately (wrist 
for sleep and activity; low back 
for gait and transitions)
• Tables and charts for analy-
sis and presentation (within 
and across days)
• Signal processing utilities

 NiMBalWear (Python) • Sleep
• Gait
• Sedentary
• Activity

• Accel
• Gyro
• Temp

• Axivity
• GENEActiv
• Actigraph
• Bittium
• Formatted EDF

• Wrist (uni- or bi-lateral
• Shank (uni- or bi-lateral),
• Trunk (sternum)

• Temporal synchronization 
of all devices (based on stand-
ard synchronization protocol) 
allowing for time series com-
parison and fusion
• Modular design allows 
domains to be capture by dif-
ferent sensors (flexible sensor 
input set)
• Tables and charts for analy-
sis and presentation 
within and across days
• Outputs resampled synchro-
nized raw time series data 
(EDF)
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include a cardiac health module to derive meaningful 
outcomes from continuous ECG or heartbeat timeseries 
(e.g., via photoplethysmography (PPG)). While ECG 
(chest) and PPG (wrist) data are usually collected from a 
single device, fusion of these data with data from other 
modes and nodes will improve the quality of physiologi-
cal and behavioural outputs related to circadian health, 
autonomic nervous system function, sleep detection, and 
activity intensity estimation. Sensor fusion-based ana-
lytics for gait and activity will also be made available in 
upcoming versions of NiMBaLWear. We have developed 
and are currently testing algorithms to detect gait from 
devices worn in various body locations. These algorithms 
will support gait detection from different sensor setups, 
improve detection and characterization of specific gait 
features, and help to refine cross-device synchronization.

Disease‑Specific analytics
Given our interest in the use of wearables for clini-
cal application, NiMBaLWear will continue expanding 
to include modules that serve specific purposes for our 
populations of interest. We are working to implement 
algorithms that target tremor, freezing of gait, upper limb 
impairment, and involuntary limb motion (e.g., periodic 
limb movement) experienced by some individuals with 
neurodegenerative disease. These modules will quan-
tify symptom occurrence and severity in free-living and 
improve accuracy of gait, activity, and sleep detection 
from limb-worn IMUs for individuals with these symp-
toms. Additionally, in support of specific studies, we are 
beginning to develop and implement code that permits 
event marking (e.g., medication taking), as well as addi-
tional lifestyle-related modules targeting social engage-
ment and GPS-based activity-space measures.

Pipeline and data accessibility
Our focus on accessibility of the pipeline and its out-
puts targets researcher and clinician end users who may 
not be skilled programmers and developers. This work 
includes efforts to optimize (and minimize) the sen-
sors and data sets within our multi-sensor model. The 
need to determine the ideal parameters for a particular 
health application is important not only for reducing 
burden and maximizing feasibility, but also to inform 
industry partners as they continue to develop market-
able solutions. Further, work is underway to develop a 
user-friendly interface for processing data through the 
pipeline to support those whose expertise is in the trans-
lation of such data (e.g., exercise prescription) and those 
who wish to explore potential applications of wearables 
outside their own areas of expertise. Lastly, within our 
group, advancing methods for information sharing is 
occurring alongside analytic and pipeline development 

to ensure successful integration of wearables-derived 
outcomes into workflows for self-management of health, 
clinical care, and shared clinical decision-making [49]. 
To this end, a reporting module has been developed to 
produce a pipeline output that transforms user-selected 
tabular data into a format that is easy for end users (i.e., 
clinicians, patients, care partners) to interpret. This mod-
ule will be available within NiMBaLWear imminently, 
once flexibility to accommodate specific use cases has 
been integrated.

Conclusion
With appropriate access to valid and reliable analyt-
ics, remote measurement using wearable sensors moves 
a critical step forward to becoming a viable and useful 
option for clinical decision-making. NiMBaLWear pro-
vides a flexible, open-source, wearable sensor analytic 
pipeline to transform raw multi-day, multi-sensor, free-
living data into accurate and relevant outcomes across 
multiple health domains. Its iterative and incremental 
development using data from more than 250 participants 
ensures a robust and reliable product, and comparison 
of NiMBaLWear to other open-source packages demon-
strates its unique capacity to derive, integrate, and share 
health-related behavioral outcomes from wearables data. 
Imminent improvements to the pipeline will further 
optimize wearable data quality, leverage sensor fusion 
techniques to refine and expand pipeline outputs and 
improve pipeline accessibility via a user-friendly graphi-
cal user interface. Conceptually, understanding an indi-
vidual’s daily life behavior has the potential to transform 
clinical care and self-management of health. However, 
success depends on continued efforts within the field to 
establish relevant approaches and rigorous standards for 
the use of wearables-derived outcomes.

Availability and requirements
Project name: nimbalwear.

Project home page: https:// github. com/ nimbal/ nimba 
lwear

Archived version: https:// doi. org/ 10. 5281/ zenodo. 
10527 599.

Operating system(s): Platform independent.
Programming language: Python 3.
Other requirements: Python 3.9 or higher.
License: MIT.
Any restrictions to use by non-academics: None.

Abbreviations
AVM  Average vector magnitude
CSV  Comma-separated values
DETACH  DEvice Temperature and Accelerometer CHange
ECG  Electrocardiography
EDF  European Data Format

https://github.com/nimbal/nimbalwear
https://github.com/nimbal/nimbalwear
https://doi.org/10.5281/zenodo.10527599
https://doi.org/10.5281/zenodo.10527599
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GPS  Global Positioning System
HANDDS-ONT  Health in Aging, Neurodegenerative Diseases and Demen-

tias in Ontario
IDP  Integrated Discovery Program
IMU  Inertial measurement unit
MVP  Minimum viable product
OBI  Ontario Brain Institute
ONDRI  Ontario Neurodegenerative Disease Research Initiative
ReMiNDD  Remote Monitoring in Neurodegenerative Disease
SPTW  Sleep period time window
SD  Standard deviation
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