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Abstract 

Background The Apple Watch (AW) was the first smartwatch to provide wheelchair user (WCU) specific information 
on energy expenditure (EE), but was found to be inaccurate (i.e., it underestimated) and imprecise (i.e., the underesti-
mation was variable). Insight is therefore needed into where these inaccuracies/imprecisions originate. Accordingly, 
the aim of this study was to investigate how much of the variation in AW EE is explained by heart rate (HR), in addition 
to other factors such as body mass and height, sex, age, physical activity level and disability.

Methods Forty participants (20 WCU, 20 non-disabled) performed three 4-min treadmill wheelchair propulsion 
stages at different speed-incline combinations, on three separate days, while wearing an AW series 4 (setting: “out-
door push walking pace”). Linear mixed model analyses investigated how much of the variation in AW EE (kcal·min−1) 
is explained by the fixed effects AW HR (beats·min−1), body mass and height, sex, age, physical activity level and dis-
ability. Participant-ID was included as random-intercept effect. The same mixed model analyses were conducted 
for criterion EE and HR. Marginal  R2  (R2m; fixed effects only) and conditional  R2  (R2c; fixed and random effects) values 
were computed. An  R2m close to zero indicates that the fixed effects alone do not explain much variation.

Results Although criterion HR explained a significant amount of variation in criterion EE  (R2m: 0.44,  R2c: 0.92, 
p < 0.001), AW HR explained little variation in AW EE  (R2m: 0.06,  R2c: 0.86, p < 0.001). In contrast, body mass and sex 
explained a significant amount of variation in AW EE  (R2m: 0.74,  R2c: 0.79, p < 0.001). No further improvements in fit 
were achieved by adding body height, age, physical activity level or disability to the AW EE model  (R2m: 0.75,  R2c: 0.79, 
p = 0.659).

Conclusion Our results remain inconclusive on whether AW heart rate is used as factor to adjust for exercise intensity 
in the black box AW EE estimation algorithms. In contrast, body mass explained much of the variation in AW EE, indi-
cating that the AW EE estimation algorithm is very reliant on this factor. Future investigations should explore better 
individualization of EE estimation algorithms.
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Background
Smartwatches, besides functioning as digital clocks, are 
increasingly equipped with sensors for tracking a variety 
of parameters related to physical activity and health [1, 
2]. One of these parameters is energy expenditure (EE). 
Energy expenditure, often measured in kilocalories (kcal), 
refers to the amount of energy an individual uses to 
maintain essential body functions (e.g., respiration, circu-
lation, digestion) and during physical activity [3]. Feed-
back on EE, especially when combined with information 
on one’s energy intake, can serve as a tool for maintain-
ing/reducing body mass. This is important as obesity is 
a growing health problem globally [4], and especially for 
wheelchair users (WCU) since the prevalence is 2.5 times 
greater in this group compared to non-disabled individu-
als (ND) [5]. The higher prevalence in WCU is related to 
impairment-related lower daily EE of ~ 5–40% compared 
to ND [6–8], and higher inactivity levels [9–11]. In this 
context, the meaningfulness of the feedback provided by 
smartwatches depends heavily on the accuracy and preci-
sion of the estimated parameter.

The accuracy of EE estimated by current devices is 
inadequate even in ND [12, 13], and in WCU, Moreno 
et. al. [14] reported that the WCU-adapted algorithm of 
the Apple Watch (AW) series 1 underestimated EE with 
a mean absolute percentage error of ~ 29%. Danielsson et. 
al. [15] corroborated those findings using a more recent 
version of the AW (i.e., series 4), where no improve-
ment in this underestimation was found (mean absolute 
percentage error of ~ 30%). Furthermore, the underes-
timation was variable for the individual WCU (i.e., the 
imprecision was high), and the underestimation of the 
AW EE increased at higher exercise intensities [15]. This 
increased underestimation indicates that the AW EE esti-
mation algorithm(s) do not satisfactorily adjust for exer-
cise intensity.

Heart rate (HR) is commonly used to track intensity 
during daily physical activity and exercise [16, 17], and 
the AW has been promoted as one of the most accu-
rate smartwatches for estimating HR in diverse ND 
cohorts and people with cardiovascular disease [18–22]. 
However, the HR-EE relationship varies with exercise 
modalities/intensities, cohorts, and between and within 
individuals [23–27]. HR alone will therefore not account 
for all variation in EE. The most important factor that 
influences total EE is fat free mass [28–31], which is typi-
cally obtained from a body composition scan. Informa-
tion on fat free mass is often not available and therefore 
not considered in the AW EE estimation algorithms. 
However, other factors that relate to fat free mass, such 
as body mass (BM), body height, sex and age may be used 
as substitutes. Individuals with higher BM typically have 
more fat free mass [32], and a larger total energy cost to 

maintain bodily functions [33–36]. Furthermore, for a 
given BM, females [37], older individuals [38], individuals 
with lower physical activity levels (PAL) [39] and/or with 
a disability [40] commonly have lower fat free mass. It 
has not yet been investigated to what extent HR, and the 
aforementioned factors account for variation in the AW 
EE. Such investigations may give indirect indications as 
to which factors the EE estimation black box algorithms 
take or do not take into account.

Therefore, the primary aim of this study was to inves-
tigate how much of the variation in AW EE is explained 
by HR and to evaluate the extent to which other factors 
such as BM and body height, sex, age, PAL and having a 
disability (or not) explain additional variation in AW EE.

Methods
Overall design
Participants performed several stages of treadmill 
wheelchair propulsion at different speed-incline combi-
nations, while wearing an AW series 4 and two criterion 
devices (a Vyntus ergospirometer for recording energy 
expenditure, and a Polar H10 monitor for recording HR). 
Analyses were performed to investigate how much of 
the variation in AW EE is explained by AW HR, BM and 
body height, sex, age, PAL and disability. The same anal-
yses were conducted for criterion EE and HR.

Participants
The data included in the current study is collected from 
the same participants as described in Lyng Danielsson 
et  al. [15]. Forty participants (20 WCU and 20 ND, 11 
males and 9 females within each group) were included. 
Participant characteristics are summarized in Table  1. 
The inclusion criteria for participation were as follows: 
age 18 – 60 years, manual wheelchair used for mobil-
ity on a daily basis (WCU only) and no health- or injury 
related issues that could be aggravated by physical exer-
tion and/or wheelchair propulsion. The WCU group was 
heterogeneous with respect to the type of impairment 
and included individuals with spinal cord injury (n = 11), 
spina bifida (n = 2), and cerebral palsy (n = 2). The remain-
ing five WCU had other neurological-, musculo-skeletal- 
or joint impairments. The PAL, which was based on the 
international physical activity questionnaire (IPAQ) score 
(see Data analysis section for calculations), was lower in 
WCU (low: n = 3, moderate: n = 8, high: n = 9) compared 
to ND (moderate: n = 9, high: n = 11). Sport associations, 
user organizations, social media, personal contacts and 
our work environment were the platforms used for par-
ticipant recruitment. Testing was performed in the Elite 
Sports Science laboratory at the Norwegian University of 
Science and Technology (NTNU) in Trondheim, Norway.
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Study protocol
Three test days were performed within two weeks to avoid 
significant changes in body composition, and with a mini-
mum of 24 h between each test to minimize the effect of 
fatigue. The tests were scheduled on approximately the 
same time of day to account for potential diurnal varia-
tions. Participants performed wheelchair propulsion 
on a treadmill which was set at different speed-incline 
combinations. Each test day was performed on a specific 
incline (0.5, 2.5 or 5%) and in a counterbalanced order to 
avoid sequence bias. Each test day consisted of a 5-min 
warm-up at 0.5% incline with a self-chosen speed that 
corresponded to a rating of perceived exertion of 7–9 on 
the Borg scale [41], followed by three 4-min stages with 
increasing speeds (Table 2). The stage speeds were pre-set 
based on pilot testing with the intention of being feasible 
for all participants and therefore adjusted for sex and level 
of impairment. Information on age, sex, BM (both self-
reported and measured), and body height was collected 
on the first test day. Participants were asked to refrain 
from high intensity training and consuming alcohol 24 h 
prior to testing, avoid caffeine on the day of testing, and 
not consume any food two hours before testing.

Equipment
BM was measured using a Kistler force plate (Kistler 
9286BA; Kistler Instruments AG, Winterthur, Switzerland). 

For the WCU group this was done while sitting in their 
own wheelchair and BM was obtained by subtracting the 
wheelchair mass (range: 6.5–18.2 kg) from the total mass. 
ND were weighed while standing (without any equipment). 
Criterion EE was calculated from gas exchange data, which 
was collected using a facemask (7450 V2 Series, Hans 
Rudolph KC, KS) attached to a Vyntus CPX ergospirom-
eter with a mixing chamber (Vyaire, Medical GmbH, Ger-
many). The Vyntus CPX was calibrated prior to each test 
and was found to have excellent accuracy with a measure-
ment error of ~ 1–2% for V̇O2 and V̇CO2 [42]. Criterion HR 
was measured using a Polar M400HR monitor and Polar 
H10 chest strap (Polar Electro Oy, Finland). The Polar H10 
chest strap was found to have good accuracy with a meas-
urement error below 4% in running [43].

The Apple Watch series 4 (Apple, Inc., CA, USA, soft-
ware version OS 7.3.3) was used during the data col-
lection and tracks HR using photoplethysmography 
and movement related features using a built-in acceler-
ometer and gyroscope. Due to the rapid technological 
development and prolonged data collection (November 
2020 – December 2022 including covid-19 related lock-
down periods), the AW series 4 may now be considered 
outdated on certain aspects. Improvements have been 
reported on the estimation of step counts from the AW 
series 1 to series 4 [44]. However, no improvement was 
found for the EE estimation of the AW series 4 compared 

Table 1 Participant characteristics with values presented as Mean ± SD

Abbreviations: BM Body mass, BMI Body mass index, WCU  Wheelchair users, ND Non-disabled

Groups Sex Age (years) Measured BM (kg) Self-reported BM (kg) Body Height (cm) BMI (kg/m2)

Both All 35.3 ± 11.8 74.8 ± 15.2 73.9 ± 14.2 174.5 ± 10.9 24.5 ± 4.1

(n = 40) Males 36.3 ± 12.2 81.1 ± 11.9 80.7 ± 10.9 181.9 ± 7.2 24.4 ± 2.8

Females 34.1 ± 11.5 67.1 ± 15.6 65.5 ± 13.6 165.3 ± 7.1 24.6 ± 5.3

WCU All 37.4 ± 12.6 74.5 ± 18.6 73.6 ± 16.7 172.5 ± 12.2 24.9 ± 5.3

(n = 20) Males 40.0 ± 12.9 80.4 ± 14.3 79.9 ± 12.3 180.5 ± 8.5 24.5 ± 3.3

Females 34.1 ± 12.1 67.2 ± 21.3 65.9 ± 18.7 162.7 ± 8.0 25.3 ± 7.2

ND All 33.3 ± 10.8 75.2 ± 11.4 74.2 ± 11.7 176.2 ± 9.9 24.2 ± 2.4

(n = 20) Males 32.6 ± 10.8 81.9 ± 9.4 81.5 ± 9.9 183.5 ± 5.9 24.3 ± 2.4

Females 34.0 ± 11.5 67.0 ± 7.8 65.2 ± 6.4 167.3 ± 5.3 23.9 ± 2.6

Table 2 Overview of the standardized speeds used on the three test days (0.5, 2.5 or 5% incline), for male participants (without 
tetraplegia) and female participants or male tetraplegic wheelchair users

Stages 0.5% day 2.5% day 5% day

Males Females/Tetraplegia Males Females/Tetraplegia Males Females/
Tetraplegia

1 4 km·h 3 km·h 3 km·h 2 km·h 2 km·h 1 km·h

2 6 km·h 5 km·h 4 km·h 3 km·h 3 km·h 2 km·h

3 8 km·h 7 km·h 5 km·h 4 km·h 4 km·h 3 km·h
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to the AW series 1, which still was ~ 30% [14, 15]. Fur-
thermore, during wheelchair propulsion, the error of the 
AW series 4 HR when compared to the Polar H10 moni-
tor, was ~ 8% [15]. Participants wore the AW on their 
non-dominant hand. Participant characteristics were 
registered in an app connected to the watch by the test 
personnel before testing started, and the activity setting 
“outdoor push walking pace” was selected for all stages.

WCU used their personal wheelchair and ND used a 
standardized wheelchair (Küschall K-Series Attract, Inva-
care, Oslo, Norway, mass: 11.7kg). Propulsion stages were 
performed on a motorized 5 × 3m treadmill (Forcelink 
Technology, Culemborg, The Netherlands) with the 
wheelchairs secured to a mobile traverse safety bar with 
safety stoppers to prevent participants from rolling off 
the treadmill (set up visualized in Lyng Danielsson [15]).

Data analysis
EE and HR from AW and the criterion devices were cal-
culated as average values over the entire four-minute 
period of each stage. Average criterion values were pre-
ferred over steady state since the AW only displayed 
estimated EE and HR average for each entire stage and 
no continuous data. The Weir formula [45] was used to 
calculate criterion EE from 10-s average V̇O2 and V̇CO2 
value (Eq. 1):

The PAL of all participants was categorized as low, 
moderate or high based on the score of the short version 
international physical activity questionnaire (IPAQ) for 
ND [46], and an adjusted version for WCUs [47].

Statistical analysis
Statistical analyses were conducted and figures created in 
RStudio, version 4.2.1 [48]. An α value of 0.05 was used to 
indicate statistical significance. Of the in total 360 obser-
vations, missing EE and HR data resulted in 299 observa-
tions for the AW and 339 observations for the criterion 
data that were included in the analyses. The reasons for 
the missing data are explained in more detail in our pre-
vious study [15].

The R lme4 package and lmer function was used for 
conducting the linear mixed model analyses. These 
analyses were chosen due to missing data and the 
repeated-measures design of our data collection with 
corresponding dependency in data [49]. The linear 
mixed model analyses were performed to investigate 
how much of the variation in the dependent variable 
(i.e., AW EE) is explained by AW HR, and self-reported 
BM. Self-reported as opposed to measured BM, which 

(1)
EE Kcal ·min

−1
= 3.941 · VO2 L ·min

−1
+ 1.106 · VCO2 (L ·min

−1 )

was similar (see Table  1), was used with regards to 
the ecological validity and allowed for getting the AW 
user accounts ready prior to the data collection. Iden-
tical analyses were conducted with criterion EE and 
HR values to visualize the actual variation explained 
by HR or self-reported BM. Furthermore, the analy-
ses on both the AW and criterion data were replicated 
with only the data of the slowest speed at each incline 
included, since these speeds correspond closest the 
activity setting “outdoor push walking pace”. Speed and 
incline were not adjusted for in any of the analyses, as 
we were interested in the estimation capabilities across 
all intensities and not within each speed-incline com-
bination. Random-intercept effects were included in all 
models to allow the HR-EE or BM-EE relationship to 
vary between participants and to account for depend-
ency in the data, since all participants conducted sev-
eral stages. Additionally, the following fixed effects 
were added to the models to further investigate their 
influence on the estimated AW/criterion EE: body 
height, sex, age, PAL and group (having a disability or 
not). Estimated regression coefficients Beta (β) were 
computed as indicators of the relationship between the 
fixed effects and dependent variable. Marginal  R2  (R2m) 
(fixed effects only) and conditional  R2  (R2c) (fixed and 
random effects) values were computed to evaluate the 

models’ ability to explain variation in our data. An  R2m 
closer to zero indicates that the fixed effects alone do 
not explain much variation.

The function anova of the afex package was used to 
investigate if adding or removing factors from nested 
mixed models (i.e., models that have an overlap in their 
fixed effects) significantly improved or reduced model 
fit. Note that we used the maximum likelihood variance 
structure (as opposed to the restricted maximum likeli-
hood structure) in the linear mixed model analyses, for 
the ANOVA model comparisons to be valid. Descrip-
tive comparisons were used for models that were not 
nested.

Results
The fit of all linear mixed models to the AW and cri-
terion EE data across all speed-incline combinations 
is visualized in Fig.  1, and the complete results of 
these analyses are provided in Supplement S1 for the 
AW data and S2 for the criterion data. For the AW 
data (Model 1 AW), HR contributed significantly, 
although to a limited extent, to explaining the vari-
ation in AW EE (β: 0.01 kcal∙min−1, p < 0.001;  R2m: 
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0.06,  R2c: 0.86) (Figs. 1 & 2). No significant amount of 
variation in AW EE was explained by AW HR, when 
running the same analyses only on the first speed of 
each incline (β: 0.0 kcal∙min−1, p = 0.26;  R2m: 0.003, 
 R2c: 0.88; Supplementary Fig. S3). For the criterion 
data (Model 1 criterion), HR explained significantly, 
and to a larger extent compared to Model 1 AW, the 
variation in criterion EE (β: 0.07 kcal∙min−1, p < 0.001; 
 R2m: 0.44,  R2c: 0.92) (Figs. 1 & 2).

BM when entered as the sole fixed effect (Model 2 
AW) was the one that explained most variation in AW 
EE (β: 0.04 kcal∙min−1, p < 0.001;  R2m: 0.67,  R2c: 0.79). 
In contrast, BM alone (Model 2 criterion) explained less 

variation in criterion EE (β: 0.04 kcal∙min−1, p < 0.001; 
 R2m: 0.15,  R2c: 0.39) (see Figs. 1 & 3).

Additional models were created to investigate whether 
the combination of fixed factors explains more of the 
variation in AW and criterion EE (Fig. 1). Sex explained a 
significant amount of the variation in AW EE  (R2m: 0.39, 
p < 0.001), although less than BM  (R2m: 0.67, p < 0.001), 
but did significantly improve model fit when being added 
together with BM  (R2m: 0.74, both: p < 0.001; compari-
son AW Model 2 vs 4, p < 0.001). There was no signifi-
cant improvement in explained variation of AW EE when 
adding body height, age, group and PAL (comparison 
AW Model 4 vs 5, p = 0.659). The amount of variation 
explained by the models not including HR (Models 2–5) 

Fig. 1 Fit of the different mixed effect models (fixed effects are provided in brackets) to the Apple Watch and criterion device data as indicated 
by marginal  (R2m) and conditional  R2  (R2c). All models include participant ID as a random intercept-effect. Group is divided into wheelchair users 
and non-disabled. Abbreviations: HR = Heart rate, BM = Body mass, PAL = Physical activity level

Fig. 2 Linear mixed effect models for energy expenditure with heart rate as the fixed effect and participant ID as random intercept-effect for Apple 
watch (A) and criterion values (B). The solid black lines are the regression lines, and the shaded areas are the 95% confidence interval of these 
regression lines
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was considerably larger for criterion EE than AW EE 
(Fig. 1). Lastly, most variation in both AW EE and crite-
rion EE was explained when all fixed effects were entered 
into the models (Models 6).

Discussion
Results from the present study show that Apple watch 
(AW) heart rate (HR) explained little of the variation in 
AW energy expenditure (EE), which is in contrast to cri-
terion HR explaining a considerable amount of criterion 
EE. Furthermore, body mass (BM) and sex together were 
the fixed effects that explained most of the variation in 
AW EE. Adding age, physical activity level (PAL) and 
having a disability, which were shown to have an influ-
ence on EE in previous studies, did not improve model 
fit. This suggests that the AW EE estimation algorithm 
mostly adjusts for differences in BM and sex, yet does not 
sufficiently adjust for increases in exercise intensity.

The finding of little variation in AW EE being explained 
by AW HR, indicates that exercise intensity is insuffi-
ciently considered by the AW EE estimation algorithm. 
It also clarifies why we found an increased underestima-
tion at higher intensity in a previous study [15]. A possible 
explanation is that the AW EE estimation algorithm does 
not further adjust for fluctuations in EE with intensity but 
uses a fixed EE within the activity settings. The AW has 
two wheelchair-specific activity settings; the activity set-
ting “outdoor push walking pace” (used in the current 
study across all stages) likely assumes that WCU exercise 
at a relatively stable low intensity, while the setting “out-
door push running pace” might be geared towards mod-
erate- to high-intensity exercise. Altogether, our findings 
suggest that the inclusion of HR or another indicator of 

exercise intensity (e.g., accelerometry), should lead to 
improved AW EE estimates within each activity setting.

Interestingly, most of the variation in AW EE was 
explained by BM alone. In contrast, a lot less of the 
variation in criterion EE was explained by this factor, 
although the relationship between the BM and EE (as 
indicated by the regression slope in Fig. 3) was similar 
for the AW and criterion values. The apparent explana-
tion is that the AW insufficiently adjusts for exercise 
intensity and thereby creates artificially low variation 
in AW EE leading to high  R2m values. On the contrary, 
for criterion EE, the lack of adjusting for intensity-
related variation in EE when entering BM as the sole 
fixed effect, leads to low  R2m values. Furthermore, in 
the current study, we found that adding sex in addition 
to BM improves model fit to the AW EE and criterion 
EE data. There are two possible explanations: 1) There 
indeed are physiological differences in the HR-EE rela-
tionship between females and males, i.e., at a given 
HR, EE is higher for males than for females since they 
have a larger stroke volume [50], more hemoglobin in 
the blood [51], and more fat free mass especially in the 
upper body [37]. 2) Alternatively, this finding may be an 
artefact of the female participants performing wheel-
chair propulsion stages at a given incline at slower 
speed compared to their male counterparts. To further 
improve EE estimates during exercise, investigations 
are needed into how information on BM and sex (pos-
sibly together with other personal information) can be 
best combined to compensate for the lack of informa-
tion on fat-free mass.

None of the additional fixed effects (i.e., age, PAL 
and having a disability or not) explained additional 

Fig. 3 Linear mixed effect models for energy expenditure, with self-reported body mass as the fixed effect and participant ID 
as the random-intercept effect for Apple watch (A) and criterion values (B). The solid black line is the regression line, and the shaded area is the 95% 
confidence interval of the curve fit
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variation in the AW EE (i.e., 75% in AW Model 5 com-
pared to 74% in AW Model 4, Fig. 1). In contrast, some 
additional variation was explained in the criterion EE 
by adding these fixed effects (36% in criterion Model 
5 instead of 30% in criterion Model 4). This indicates 
that age, PAL and having a disability are factors that 
should probably be considered in the AW EE estima-
tion algorithm, given that the findings for variation 
explained in criterion EE align with previous stud-
ies reporting that age, PAL and disability affect body 
composition and EE [38–40]. Of note, despite the AW 
EE estimation algorithm being tailor-made for WCU 
including a specific wheelchair activity setting, it does 
not seem to account for disability beyond adjusting for 
the generally lower EE during wheelchair propulsion 
compared to lower-body or whole-body exercise. This 
is likely due to the challenges and costs associated with 
collecting sufficient amounts of data from individuals 
with various types and levels of impairment, to further 
individualize the EE estimation algorithms. Creating 
several smaller datasets like the one collected in the 
current study and making them publicly available, may 
in the future contribute to a larger database for better 
individualization and more accessible technology for 
individuals of minority groups. This can result in more 
WCU having access to smartwatches that accurately 
estimate their energy expenditure. Consequently, this 
might help them to increase their understanding of a 
good balance between activity and nutrition, which 
can lead to better health.

Methodical limitations and future considerations
While the current study includes a sample size large 
enough to have sufficient power for our analyses, consid-
erably more data will be needed to develop better indi-
vidualized EE estimation algorithms that are tailored to 
individual WCU with various impairments.

Furthermore, and as described previously, we used the 
activity setting “outdoor push walking pace” during all 
stages. This may have led to an increased underestimation 
in AW EE as would have been the case when choosing the 
“outdoor push running pace” setting. We also performed 
the same analyses on the slowest speed at each incline, 
which correspond closest the activity setting “outdoor 
push walking pace” (see Supplementary Figures S3). The 
results of these additional analyses were similar in that 
AW HR explained little in AW EE, which further supports 
that an indicator of exercise intensity is currently lacking. 
In hindsight, we should have considered the selection of 
the activity settings more carefully, and either used “out-
door push running pace” for the higher intensity stages or 
compared the potential difference between the two set-
tings on estimated AW EE.

In addition, participants wore the AW on their non-
dominant hand. This choice was mainly made for practi-
cal purposes, since participants needed to start and stop 
the watch for each 4-min stage. The location of the smart-
watches is a topic for debate, as the dominant arm is used 
more in daily life, thereby possibly obscuring activity 
measurements. However, watch location is unlikely to 
impact the results of the current study, since the activity 
during the stages was standardized wheelchair propul-
sion with relatively similar activity of both arms.

Lastly, all factors included in the present study 
explained, at best, 78% of the variation in the AW algo-
rithm. We recognize that 100% explained variation for 
AW EE might be unattainable due to the true variation 
in measurements and the black-box algorithms relying 
on additional unknown factors (e.g., accelerometry). 
However, identifying and including potentially missing 
factors, most importantly a suitable intensity measure, 
should further improve EE estimation algorithms.

Conclusion
It remains unclear whether HR is used to adjust for 
intensity in the AW EE estimation algorithms, as it con-
tributed little to the explained variation in AW EE. This 
finding is in contrast to criterion HR explaining a con-
siderably higher amount of variation in criterion EE. It 
also indicates that HR or another indicator of intensity, 
such as accelerometry, should be used to improve the 
accuracy of estimated AW EE. In addition, BM as a sole 
fixed effect explained more than half of the variation 
in AW EE, suggesting that the AW algorithms adjust 
the EE estimate based on participants reported BM. 
Furthermore, the combination of fixed effects BM and 
sex explained most of the variation in the AW EE. This 
suggests that the AW algorithm accounts for some of 
the sex differences in EE  —  beyond the differences in 
BM. Adding body height, age, PAL or having a disabil-
ity did not improve model fit to the AW EE data, but 
did improve model fit to the criterion EE data. Future 
investigations are needed to determine which inten-
sity measure best explains the variation in EE in WCU 
and how to better individualize the EE estimation algo-
rithms based on personal characteristics such as age, 
PAL, and also disability-related information.

Abbreviations
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